基于增强CT的深度学习影像组学模型用于结直肠癌微卫星不稳定表达状态的预测价值分析
DOI:
作者:
作者单位:

作者简介:

【通讯作者】黄陈,男,博士,主任医师,博士研究生导师。 美国 MD 安德森癌症中心肿瘤学博士后。 上海医学会外科学分会微创 外科学组组长,中国医师协会微无创专委会胃肠外科学组副组 长,中国抗癌协会肿瘤胃病学专委会常务委员,上海医师协会医 学机器人专委会普外科工作组副组长,上海普通外科学机器人外 科质控组长,上海抗癌协会腹膜肿瘤专委会副主任委员,上海市 研究型医院协会普通外科微创专委会副主任委员。 主要研究方 向:胃肠肿瘤病理组学和影像组学。 #共同第一作者

通讯作者:

基金项目:

国家自然科学基金面上项目(编号:82472921);上 海交通大学“交大之星”计划医工交叉研究基金重点项目(编号: 24X010301419) ;东方英才计划拔尖项目(编号:2023)


Analysis of the predictive value of contrastenhanced CTbased deep learning radiomics model for microsatellite instability expression status in colorectal cancer
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的 基于增强 CT 影像组学联合深度学习方法构建结直肠癌微卫星不稳定( MSI)状态的预测模型。 方法 回顾性收集上海市第一人民医院 2016 年 1 月至 2023 年 12 月期间接受结直肠癌根治术并经免疫组织化学( IHC)检测的患者 211 例。 其中微卫星稳定组(MSS)130 例,MSI 组 81 例。 按 7 ∶ 3 比例随机分为训练组和验证组(训练组 MSI 57 例及 MSS 91 例; 验证组 MSI 24 例及 MSS 39 例)。 在静脉期增强 CT 图像上手动勾画肿瘤三维感兴趣区( VOI),使用 PyRadiomics 提取 1458 个影像组学特征,使用 ResNet50 获取 512 个深度学习特征,并组合生成融合特征。 通过类内相关系数、Pearson 相关性分 及 LASSO 回归筛选特征,采用支持向量机( SVM)、逻辑回归( LR)、随机森林( RF)、自适应增强( AdaBoost)及 k 近邻算法( KNN)等 5 种机器学习算法分别构建基于影像组学、深度学习及融合特征的预测模型。 使用受试者工作特征曲线下面积 (AUC)和决策曲线分析评估模型性能。 结果 最终筛选出 25 个关键特征(15 个影像组学特征、10 个深度学习特征)。 验证 组中,基于影像组学特征的 KNN 模型最优,AUC 为 0. 761(95% CI 0. 603 ~ 0. 877);基于深度学习特征的 RF 模型最优,AUC 为 0. 772(95% CI 0. 639 ~ 0. 886),而基于融合特征的 AdaBoost 模型性能最优,AUC 为 0. 862(95% CI 0. 756 ~ 0. 949)。 结论 基于增强 CT 影像组学与深度学习特征的融合模型预测结直肠癌 MSI 状态具有较高的诊断价值,有望为个体化免疫治疗决策 提供支持。

    Abstract:

    Objective To develop a predictive model for microsatellite instability (MSI) status in colorectal cancer based on contrast-enhanced CT radiomics combined with deep learning methods. Methods A total of 211 patients who underwent radical resection for colorectal cancer and were examined by immunohistochemistry (IHC) at Shanghai General Hospital between January 2016 and December 2023 were retrospectively collected. Among the 211 patients, there were 130 with microsatellite stable (MSS) and 81 with microsatellite instability (MSI). The patients were randomly divided into a training group and a validation groups at 7 ∶ 3 ratio. The training group included 57 patients with MSI and 91 patients with MSS. The validation group included 24 patients with MSI and 39 patients with MSS. Three-dimensional volumes of interest (VOIs) of the tumors were manually delineated on venous phase contrast-enhanced CT images. A total of 1458 radiomics features were extracted using PyRadiomics, and 512 deep learning features were obtained using ResNet50. These features were then combined to generate fusion features. Feature selection was performed using intraclass correlation coefficients, Pearson correlation analysis and LASSO regression. Predictive models based on radiomics, deep learning and fusion features were constructed separately using five machine learning algorithms, including support vector machine ( SVM ), logistic regression (LR) , random forest (RF), adaptive boosting(adaboost) and K-nearest neighbors(KNN) Model performance was evaluated by the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). Results A total of 25 key features were ultimately selected, including 15 radiomics features and 10 deep learning features. In the validation group, the optimal model based on radiomics features was the KNN model. Its AUC was 0. 761 (95% CI = 0. 603 ~ 0. 877 ). The optimal model based on deep learning features was the RF model. Its AUC was 0. 772 (95% CI = 0. 639 ~ 0. 886). The optimal model based on fusion features was the AdaBoost model. Its AUC was 0. 862 (95% CI = 0. 756 ~ 0. 949). Conclusions The combined model based on contrast-enhanced CT radiomics and deep learning features shows high diagnostic value in predicting the MSI status of colorectal cancer. It is expected to support personalized immunotherapy decision-making.

    参考文献
    相似文献
    引证文献
引用本文

王彬瞻,方圆,王庆国,黄陈.基于增强CT的深度学习影像组学模型用于结直肠癌微卫星不稳定表达状态的预测价值分析[J].实用医院临床杂志,2025,22(4):13-18

复制
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-04-21
  • 最后修改日期:2025-05-15
  • 录用日期:
  • 在线发布日期: 2025-08-10
文章二维码